

Java: How low can you go

Low-latency design for RFQ and high-
frequency trading – covering Java 24+ and
beyond.

Zahid HOSSAIN

Java: How low can you go.

Copyright © 2025.

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the author and
publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty,
either express or implied. Neither the author, nor the publisher,
its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by
this book.

First published in 2025.

This book is dedicated to Quanteam UK, whose inspiration and
sponsorship made it possible. Quanteam UK is a consultancy
firm specializing in the Financial Markets industry.

— Zahid HOSSAIN

Contributors

About the author

Zahid HOSSAIN is an entrepreneur, software engineer, and technology
leader with over 18 years of experience in e-trading, quantitative
development, and building low-latency trading systems at Charles
River / State Street, Jefferies, Citi, Credit Suisse, Barclays Investment
Bank, and Bloomberg, in London and New York. He has a strong
educational background, holding both a Master's and a Bachelor's
degree in Computer and Electrical Engineering where he graduated
top of his class.

Throughout his career, he has been recognized multiple times as an
exceptional performer for his contributions to high-impact technology
initiatives. Currently based in London, Zahid specializes in low-latency
Java development, and he has a passion for algorithms, data
structures, financial technology, and AI.

About the reviewers

Antoine DUCHER, founder and CEO of Quanteam UK, a London-
based consultancy dedicated to financial markets and quantitative
modelling. Antoine brings over 20 years of experience in capital
markets and consulting.

Eugenie STEELE, Head of Marketing at Quanteam UK. Eugenie has
over 18 years of experience in marketing, having previously worked for
BNP Paribas and RBC BlueBay Asset Management, both in France and
the UK.

Sabahudin IRFAN, Consultant at Quanteam UK. Sabahudin has many
years of experience in financial services and technology, having
worked with major institutions such as Barclays, State Street, and
others.

TABLE OF CONTENTS
Preface ... 12

Summary ... 12

Interview Questions .. 13

References .. 14

Java Types ... 16

Primitive Types ... 16

boolean ... 18

Wrapper Types in Java ... 24

JVM Optimizations in Wrappers ... 27

JVM caching Mechanism for wrapper types 29

String Type ... 33

JVM Optimization Around String ... 35

Streamlined Deduplication Process: 37

Record ... 41

Some strategies for achieving low latency. 42

Type Checking and Arrays in Low Latency 43

Conclusion .. 50

Java Collections and Their Underlying Mechanics................... 51

HashMap ... 52

JVM HashMap Optimization .. 54

Resizing Issue .. 55

ConcurrentHashMap .. 57

ConcurrentHashMap Synchronization Tricks 58

HashMap Vs ConcurrentHashMap Resizing 61

Fail-Fast vs. Fail-Safe Iteration .. 62

Internal Mechanics of an ArrayList 64

Low Latency Application’s Hot Path 66

CopyOnWriteArrayList .. 67

Here are some Tricky Interview Questions on collections 70

Threading .. 74

JVM Thread Deep Dive .. 74

ForkJoinPool vs ThreadPoolExecutor 77

Virtual Threads ... 79

ForkJoinPool in JDK ... 88

Thread Pinning In JVM/Java (CPU Affinity Explained) 91

Thread Priority .. 93

Some Interview Questions .. 93

Synchronization ... 98

How do they work ... 99

Biased Locking ... 105

Reader Writer Lock ... 107

Compare-And-Swap (CAS) .. 110

CAS vs ReentrantLock Performance 113

Low Latency Synchronization Test 118

Some Tricky Interview Questions 120

The Evolution of Garbage Collection 122

The First People.. 122

The Reason for G1GC ... 123

Shenandoah Garbage Collection: The Brooks Forwarding
Pointer and Regioned Heap ... 126

Z Garbage Collection: Colored Pointers and Concurrent
Relocation ... 131

Azul's C4 Garbage Collection: Hardware Concurrency 137

Typical Pause Times of Major Java Garbage Collectors 141

Epsilon GC ... 143

No-GC Off-Heap Storage .. 145

Eliminate All Transient Allocations 145

Utilize Off-Heap Memory or Direct Buffers 146

Pre-allocate Object .. 147

Java’s built-in collections (HashMap, ArrayList, etc.) 147

Reuse Charset Encoders and StringBuilders 148

Use Pooled Network Buffers .. 148

Avoid Lambdas and Anonymous Classes in Hot Code 148

Avoid String Creation and Exception Throwing 149

GC free, Lock free Ring Buffer .. 150

Conclusion .. 152

Java Recent Projects .. 154

Valhalla ... 154

Leydon ... 154

Babylon ... 155

Panama ... 155

Loom ... 155

Project Leydon: The JVM’s Speculative Nature 156

Project Babylon: Code Reflection and the GPU Future of Java
 ... 158

Project Amber and Low latency Application 162

Azul’s Zing in HFT ... 163

Trading Systems .. 166

RFQ System Architecture .. 169

Market Making Architecture .. 172

How Exchanges match orders ... 175

Darkpool .. 179

Smart Order Router .. 187

Algorithmic Execution Strategies 191

VWAP - Volume Weighted Average Price 193

TWAP - Time Weighted Average Price 195

POV Participation of Volume ... 196

Client Order Lifecycle - Combining the Parts 198

Ultra Low Latency Code ... 202

What is ultra-low latency .. 202

Low latency business in finance 203

Programming Language .. 204

Challenges of Java and other consideration 205

Low Latency libraries in Java ... 206

Zero Copy .. 208

CPU and Memory consideration 209

Method Inlining .. 216

Loop unrolling .. 218

Escape analysis ... 220

Branch Prediction ... 220

SIMD operation (Java 24+) ... 223

Thread Pinning (CPU Affinity) ... 226

General Optimizations for Low-Latency Systems 228

OS (LINUX) Tuning .. 232

The importance of OS tuning ... 232

The concept of Jitter.. 233

Measure Before You Tune.. 234

Red Hat Linux – Tuned Profiles ... 234

NUMA Awareness ... 236

BIOS Configuration ... 239

CPU Isolation ... 242

Cage your GC Thread .. 246

Avoiding Interference (De-Jittering) 247

Huge Pages — Making Memory Access Faster 248

Kernel Timer Tick (nohz_full) .. 249

Conclusion .. 252

Market Data & Pricing Engine .. 254

Market Data – UDP vs TCP ... 255

Market Data Format .. 257

Architecture of Market Data – Pricing Engine 258

Conclusion .. 268

Network Tuning ... 270

Typical Packet Flow .. 271

Kernel Overhead .. 273

Kernel Bypass .. 275

Interrupt mode vs Poll Mode ... 275

Smart NIC cards ... 277

Linux Tuning ... 278

Conclusion .. 281

KDB+ A Low-Latency Database ... 283

High-frequency Trading ... 284

KDB+ Architecture .. 285

KDB+ processes ... 288

Why KDB+ is fast .. 288

How Compression Works in kdb+ 290

Understanding the Q Language 292

Conclusion .. 294

INDEX ... 296

This page intentionally left blank

PREFACE

SUMMARY

This book reflects many years of building and tuning low-latency
trading systems on the premises of some of the most prominent
investment banks in the world. It includes firsthand engineering
decisions and production environments where every microsecond
counts. For most of my professional life, I have straddled the domains
of Java performance, electronic trading, and system architecture. This
book, or rather the subsequent chapters, sets out to teach the readers
the advanced features of Java types, memory layouts, JVM
optimizations and how the types like wrappers, primitives, records
and strings work internally along with insight into JIT compiler and the
memory model. It uses practical case studies to demonstrate the
principles of bounded garbage, predictable performance in latency
sensitive environments, reliable, and cache aware.

The subsequent chapter delves into the core libraries in addition to the
concepts of threading and synchronization, detailing the operational
mechanics of collections, the processes during resizing, and the
significance of fail-fast and fail-safe practices in overload conditions.
Then, the book describes the use of concurrency mechanisms in Java
from biased locking and CAS to modern virtual threads along with
CPUs pinned to threads. These themes are augmented by the history
of garbage collection from G1GC to Shenandoah, ZGC, and Azul’s C4,
along with techniques to remove GC pauses through off-heap and
zero-copy methods. Every chapter provides an equilibrium of theory

and low-level practical tuning, supported by reasoning from
benchmarks.

The final chapters unify the theory underpinning Java performance
with actual trading infrastructure followed by OS and network tuning.
It describes the processes of order matching in addition to the
architecture of RFQ and market-making systems, the execution of
market algorithms such as VWAP and TWAP on low-latency stacks,
and the structuring of algorithmic strategies, Smart Order Router
(SOR) etc. It has demonstrated consistent performance through OS-
level tuning, NUMA, CPU isolation, and network optimization with
Kernel bypass. The book concludes with an outline of Java code
optimization and an integrated perspective on JVM systems
competing in high-frequency and algorithmic trading where every
microsecond is pivotal to profit-making.

INTERVIEW QUESTIONS

This volume contains more than just system design, it also contains
hundreds of real interview questions alongside intellectual exercises -
not fictitious enigmas, rather questions I have asked, and I have been
asked, during my decades of employment mentoring and hiring global
engineering trading teams. Engineers trying the challenging field of
low-latency systems will find these questions valuable, as will
interviewers seeking to assess a candidate’s real-world capability.
Each question touches on a real-life design problem, system
performance obstacle, or JVM instance that is observable in
production. This book tries to equip the readers with practical insights
that only come with years spent in highly demanding, low-latency, and
high-pressure work situations in addition to technical knowledge.

REFERENCES

While writing this book, I undertook some additional research on the
topics, including watching several YouTube lectures. I found that
some of these sources had already conducted similar types of
benchmark tests that I aimed to conduct. To avoid unnecessary
duplication of work, I have appropriately integrated those benchmark
findings. I have transformed some diagrams in the book based on
similar ideas found in those lectures, although I have changed them to
better reflect my explanations by adding or removing elements. I
would like to thank these creators for their valuable contributions to
the low latency community. Lastly, the title of this book was inspired
by one of the lectures that particularly resonated with me. For those
who wish to pursue these materials, I have collected the list of videos
below.
Understanding the Disruptor
https://www.youtube.com/watch?v=DCdGlxBbKU4

Kernel-bypass techniques for high-speed
https://www.youtube.com/watch?v=MpjlWt7fvrw

Ultra-low latency Java in the real world - Daniel Shaya
https://www.youtube.com/watch?v=BD9cRbxWQx8

Low Latency Market Data
https://www.youtube.com/watch?v=y-BSb045LNk

Network Performance Tuning
https://www.youtube.com/watch?v=ZYCKSN4xf84

This page intentionally left blank

Primitive Types

16

JAVA TYPES

The most central part of the Java type system is its small set of
primitive types, which form the foundation of all data structures.
In Java, any variable that is declared must first be given a type, which
is a form of pact. This pact defines the total amount of memory
allocated, the maximum and minimum values that can be stored, and
the functions that can be performed on the variable.

Since Java was developed for use on any type of hardware, the size of
each primitive type is bound by the language specification itself. This
is determined by the Java Virtual Machine, not by the processor or the
operating system. A 32-bit int is thus, and for example, exactly 32 bits
on a desktop Java Virtual Machine (JVM) and on an embedded
controller. This was one Java’s main selling points back in the day, the
concept of write once, run anywhere.

PRIMITIVE TYPES

Primitive types are not objects and exist in system memory as
opposed to the heap. They do not possess method tables, identity,
headers, or any other form of metadata. Primitive types are composed
of pure values, which is the reason as to why they are extremely fast
and compact. Advanced Java programmers are thus able to perform
any numeric operation and use loops or even counters without any
form of reduced performance by using primitive types instead of
wrapper classes.

Eliminate All Transient Allocations

145

NO-GC OFF-HEAP STORAGE

In any ultra-low-latency system such as, HFT, RFQ or continuous
market making, every microsecond counts. For general-purpose Java
applications, ‘garbage collection’ (GC) involves unpredictable pauses.
This is unacceptable on the hot path of any trading engine. Whether
the JVM is using ZGC, Shenandoah, or Azul's C4 collector, these still
incur safe point coordination and metadata barriers. In an HFT engine,
a 50-microsecond pause is already catastrophic. This results in
missed quotes, stalled prices, ignored order delays, or out-of-order
response acknowledgments.

Hence the term "Zero-GC Java" is used not to describe a globally
disabled GC function, but rather, critical path design in which the Java
Virtual Machine (JVM) has ‘nothing’ to collect. These sections of code
are usually the order routing loops, engine matching, and market data
ingestion. In these loops, all transient object creation must be erased.
Reliance on object reuse, off-heap data structures, and pre-allocation
is what is needed.

Below are the main techniques to implement ‘true’ Zero-GC behavior
on a Java hot path.

ELIMINATE ALL TRANSIENT ALLOCATIONS
To never have to invoke garbage collection, never allocate. Slow loops
with hot vertices suffer from heap churn due to every new operation.
You should not allocate like those below:

Valhalla

154

JAVA RECENT PROJECTS

Shifting Focus of Java Projects within Recent Years.

Java is a language which has been greatly improved in the last few
years. The development of OpenJDK has systematically improved Java
by targeted ‘sub’ projects which aim to improve the underlying JVM
model. The modernization of Java OpenJDK projects aims to shift the
use of Java to lower latency in a compute cloud, while enhancing
native use and concurrency with improved JVM CPU profiling. The
projects modernize Java to achieve higher efficiencies and
performance compute Java workloads.

Compute intensive workloads such as trading systems and numerical
analytics can massively benefit from the use of projects. I will begin
with a basic introduction, followed by a deep dive into their synergies
in low-latency environments.

VALHALLA
Java 24 and above implements value-based classes which allow for
objects without identity (ex. class instances missing object identity).
The use of Valhalla’s classes greatly improves memory cache and
reduce the overhead placed on the heap while also improving the
locality of the memory cache.

LEYDON
Project Leyden (Java 24+) addresses JVM's slower startup and warm-
up delays. The approaches of static image generation and AOT
initialization help reduce the time that Java applications take to reach

Azul’s Zing in HFT

166

TRADING SYSTEMS

Every microsecond counts towards competitiveness in high-frequency
trading (HFT). The order to market systems are designed to receive and
process market data, make trading decisions, and final orders to the
exchange in as little as 10 microseconds- a complete process.
Understanding exchange microstructure, intricate matching
algorithms, and advanced systems design techniques (kernel-bypass
networking, CPU pinning, cache-friendly data layouts, and lock-free,
GC-free data structures) are fundamental for achieving this
performance. HFT infrastructure usually consists of collocated
servers positioned in the data center of the exchanges to minimize
network latency and ensure deterministic execution. There is a strong
focus on speed, with stable latency in the single-digit microsecond
range because high-frequency trading is extremely sensitive to delays.
Even tiny spikes in latency can cause missed trades or outdated
quotes.

Unlike trade execution systems, counterpart and order management
systems like Charles River, Bloomberg AIM, ION and Fidessa operate
under different latency thresholds and focus on the millisecond range,
rather than the microsecond range. Luckily, I had the privilege to work
on all of them throughout my career. These systems care about speed
only to the extent that performance still meets requirements for
reliability, auditing, and regulatory compliance. These systems also
address the management of large order streams, portfolio allocations,
and multi-exchange and dark pool connectivity. Their primary focus is
on execution quality and expense, rather than timing precision. These

Darkpool

182

operators to submit completed trades for verification for post-trade
transparency in real time. Operators must also conduct and enforce
strict, non-discriminatory, access control to order information,
implement malicious order information systems, and ensure no client
discrimination access policies.

However, dark pools have become critical in the new configurations of
the micro-structure of many modern exchanges. It also needs to be
understood that dark pools are neither illegal nor expressly unfair,
they are simply used differently. If public repositories are compared to
Times Square and its noise and activity, dark pools are private art
galleries and meeting rooms that facilitate the completion of serious
deals hidden from the public eye. Each of these places is critical in
their own form. One gives the price; the other provides the volume.

For many traders, dark pools have become another reminder that the
publicized market is only a small percentage of the reality. Not every
volume of trade is visible nor every volume surfaced during the price
discovery process is public, public transactions where the real market
is neither dark nor light. Therein lies the true market structure of
contemporary trading. To optimally design a low latency trading
system, both market conditions must be understood.

Major Dark Pools in International Markets

There are differences between dark pools, some are owned by global
investment banks while others are owned by independent technology
companies or exchanges. Each has its own clientele, regulatory
coverage and matching logic. Below are some dark pools that have
had an impact on institutional trading over the last ten years.

Credit Suisse Crossfinder

What is ultra-low latency

202

ULTRA LOW LATENCY CODE

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” - Donald Knuth

Caring about that 3% is not premature optimization in my sense; it is
the early realization that low latency begins with awareness.
Recognizing small inefficiencies before they accumulate is what
separates ordinary systems from truly optimized ones.

WHAT IS ULTRA-LOW LATENCY
Within the domain of ‘Ultra-low Latency Programming’, software
performance is sub-100 microseconds and every microsecond is of
utmost importance. Response times are not only important on
average; there are tail latencies to be dealt with, even the 1 out of
10,000 events that take a tad longer to process. Such systems, high-
frequency trading engines and real-time risk processors, are not only
built for speed; but also, for the predictably consistent performance
termed the four nines (99.99%) of latency stability. In high precision
scenarios, questions deepen, for instance, whether Java is a suitable
language for ultra-low latency systems, what programming paradigms
are necessary to achieve such a level of determinism, and do
microservices or a distributed architecture help or hinder these
objectives. Such questions define the ultra-precision art and
engineering necessary to build systems with failures and successes
separated only by a matter of nanoseconds.

Branch Prediction

222

I consider Ultra-low latency is a programming design pattern
regardless of programming language. For example, branch-less
coding, lock-free coding, no GC coding etc, they are all science rather
than engineering. Consider the following picture with lots of
branches:

Can you make this better?

The importance of OS tuning

232

OS (LINUX) TUNING

As you strive towards achieving microsecond-level determinism,
variability becomes your enemy. Linux is an outstanding general-
purpose operating system. Yet, under its default settings, it
predominantly optimizes for fairness relative to resource allocation,
throughput, power efficiency, and not, latency predictability. In ultra-
low latency trading, we have to convert Linux from being multi-tenant,
time-sharing to being deterministic, single-tenant.

In this chapter, we understand how to transform Java trading engines
on a standard Linux installation into a more predictable environment.
The focus is on incoherent microsecond precision, wherein pinned
threads, aligned NUMA, configured IRQ, and tuned BIOS collectively
erased the variability towards achieving consistent micron level
performance.

THE IMPORTANCE OF OS TUNING

For the best Java code, fastest network card, and lowest-latency
queue to matter, the operating system must not interrupt at the worst
time. 100–500 µs delay, incurred by a background kernel thread, an
errant interrupt, or some fuel-saving power throttling, is an eternity in
trading.

OS tuning is not simply about making Linux "faster." It is about making
it predictable. We do not stand for "average fast." We want always
fast. Enhancing a system's performance doesn't always require code

Market Data – UDP vs TCP

255

MARKET DATA – UDP VS TCP
TCP vs. UDP – Reliability vs. Speed: When transporting market data
across a network, TCP and UDP are the two predominant options
available.

Designed primarily for accuracy, TCP (Transmission Control Protocol)
is responsible for tracking every individual packet utilizing sequence
numbers, and issues an acknowledgment (ACK) for each individual
packet. In the case something is lost or arrives out of sequence, TCP
will also retransmit the packet. This is what makes TCP very reliable.
However, the system's overall latency becomes higher and more
unpredictable because each packet necessitates back-and-forth
communication. Because of these characteristics, TCP is suited for
scenarios such as file downloads and web traffic, but not for
environments where every microsecond is highly critical.

UDP (User Datagram Protocol), on the other hand, entails no such
retransmission, acknowledgment, or sequencing. Streamlined
systems can simply send packets for an undetermined amount of time
without check. This is also called “fire and forget”. This behaviour is
what makes UDP very appealing in high-frequency trading (HFT) and
the overall market. In systems where speed is more critical than
reliability, UDP is preferred. This is because, without any check-in
system, UDP loses packets on the system with no possible
retransmission. This means that the application must recognize the
lost packets and have the protocol to recover it.

How Exchanges Send Market Data

To send market data, exchanges employ UDP multicast. With this
technology, a single data packet can be sent to hundreds and even
thousands of recipients simultaneously. Each market data update - be

Conclusion

270

NETWORK TUNING

One of the most critical steps in high-frequency trading system
development is the optimization of the network since it is the primary
and terminal component of each trade execution cycle. We're talking
about systems that handles even more than millions of packets per
second, so every microsecond of overhead matters. In high-frequency
trading, market data is received and processed in real-time, and
orders are transmitted over the same network. Consequently, delays,
jitter, and loss of data packets all negatively impact the profit or even
profit can turn into loss. The optimized performance of the JVM, code
and OS tuning do not mitigate the adverse effects of a slow or
unstable network. Additional latency spikes are a result of added
interrupts, context switching, and overheads from the TCP stack, all of
which can take microseconds.

During this chapter, we examine techniques that are kernel-bypass,
which are strategies that allow user-space code to interact directly
with a network card without utilizing any of the operating system's
networking stack. Kernel-bypass is not a new concept; it has been
implemented over the past decade in leading trading companies. As
engine designer for low latency systems at Credit Suisse more than a
decade ago during 2011, it was my objective to eliminate the kernel
path and allow the application to communicate directly with the
network hardware. Kernel-bypass provides the ability to eliminate
interrupts, system calls, and data copies, which facilitates the faster
arrival of packets into user memory for direct processing by a polling
thread. There are hardware solutions, such as the Solarflare (currently
Xilinx) network interface cards (NICs), also called smartNIC, together

Conclusion

283

KDB+ A LOW-LATENCY

DATABASE

When it comes to the sheer volume of data generated by today's
systems, traditional databases just don't cut it. Financial markets,
industrial sensors, telecom networks and online platforms all fire off
data in a continuous flow of time-stamped events, and the challenge
isn't so much about storing that data, but about crunching it down to
earth in real-time. Well-known decision-making environments that
require millisecond. Sometimes even microsecond, responses mean
that the database is basically on par with the application logic sitting
above it.

Kdb+ was built from the ground up to tackle this sort of data and is
often referred to as a high-performance time-series database, but
that doesn't tell the full story. It's the architectural ideas that enable
kdb+ to gobble, slice and dice and send back out enormous amounts
of real-time data with hardly any delay that set it apart. Coming
hotfooting into the world of finance, kdb+ is at its most visible, but it's
being used in manufacturing, aerospace, telecommunications
networks and lots of other places where the cost of delay is a serious
issue.

Two things drive kdb+'s lightning-fast performance: it's purely in-
memory, with the most recent data sitting snuggly in RAM and being
able to be queried in less than a millisecond, and it’s column-based
rather than row-based. Since time-series workloads tend to involve

Understanding the Q Language

293

select ma5: 5 mavg bid by sym from quote
Output may look like this:

sym ma5

AAPL 150.10

AAPL 150.125

AAPL 150.15

AAPL 150.1425

AAPL 150.15

AAPL 150.18

MSFT 305.50

MSFT 305.525

MSFT 305.55

VWAP (Volume-Weighted Average Price): Consider a Trade table
time timestamp
sym symbol
price float
size int
the basic VWAP for each symbol is:

select vwap: sum price * size % sum size by sym from trade
Output may look like this:

sym vwap

AAPL 150.146

MSFT 305.553

A time-bucketed VWAP (for example, 1-minute intervals) is just as
straightforward:
select vwap: sum price * size % sum size by sym, 1 xbar time.minute
from trade
The expression 1 xbar groups trades into 1-minute buckets before
calculating VWAP within each group.

Conclusion

294

Q functions as the query and control language, which manages how
data is loaded, transformed, stored and queried, now or in the past,
when working with kdb+. Coming running over off the heels of the data
load, q's ability to run directly on columnar memory arrays and shun
unnecessary overheads gives developers the chance to write
lightning-fast analytics code with the absolute minimum amount of
code.

The fusion of language, engine and storage model in kdb+ is the secret
to its success in providing extremely low-latency, high-volume time-
series analytics.

CONCLUSION
Speed is not just an advantage, it's basically a necessity, when
working in the high-stakes world of high-frequency trading and
electronic markets. Financial firms count on databases that can
seamlessly keep up with the torrent of live market data, crank out
microsecond-level analytics, and deliver reliable results even under
the most extreme loads.

Well-known as the de-facto standard in major banks and trading
companies, kdb+ has become the go-to for all these reasons. Its in-
memory, column-structured layout, merged with the expressiveness
of the q language, allows teams to cut through the noise of market
ticks, compute rolling statistics and dissect risk in real time without
hitting the brakes on the trading engine. Today, numerous global
banks, market makers, and quant desks use kdb+ as the anchor of
their analytics stacks.

In my time at Citi working in Equity Derivatives, kdb+ was at the heart
of real-time monitoring of Greeks, intraday risk and market-sensitive
signals and I have found that its low-latency intake, lightning-fast

Conclusion

295

vectorised queries and efficient storage make it one of the handful of
systems that can handle the scale and speed needed in modern low-
latency application.

Conclusion

296

INDEX

:+PrintInlining, 210
+AlwaysPreTouch, 242
Aeron, 143, 145, 163, 179, 181, 192, 194, 200, 201, 202
Affinity, 90
Agrona, 65, 84, 143, 145, 163, 180, 200, 201, 202
Algorithmic Execution Strategies, 186
Anonymous Classes, 145
ArrayList, 64
Autoboxing, 29
Babylon, 151
Biased Locking, 104
BigDecimal, 24
BIOS, 225, 227, 232, 233
BitSet, 21
boolean, 17, 19, 20, 21, 22, 26, 41, 68, 106, 109, 110, 216
Boolean, 19, 26, 27, 30
boxing, 40, 51, 65, 144, 223
Branch Prediction, 214
C4 Garbage Collection, 134
Cache filling, 207
CAS, 13, 56, 58, 59, 60, 67, 98, 99, 103, 109, 110, 112, 113, 117,

118, 222
Challenges of Java, 199
Chronicle Queue, 181, 200, 202
Citi, 177, 186
Client Order Lifecycle, 192
Compare-And-Swap, 109
Concurrent Mark-Sweep, 121
ConcurrentHashMap, 56

Conclusion

297

contiguous memory, 44, 46, 204
Continuous Compaction, 136
CopyOnWriteArrayList, 67, 69, 70, 72, 73
CountdownLatch, 114
CPU Affinity, 90, 219
CPU Isolation, 235
Credit Suisse, 177, 186, 263
Crossfinder, 177
C-states, 233
CyclicBarrier, 114, 115
dark pool, 161, 174, 175, 176, 177, 178, 179, 180, 182, 184, 193
Darkpool, 174, 178
Deduplication, 37, 38
De-Jittering, 240
Direct Buffers, 143
Drop Copy, 185, 186, 193, 194
Encoders, 144
Epsilon GC, 140
Escape analysis, 213, 214
Exception Throwing, 146
Fail-Fast, 62
Fail-Safe, 62
Fairness, 102
False sharing, 95
FixTag, 40
ForkJoinPool, 77, 78, 79, 80, 86, 87, 88, 89, 90
Forwarding Pointer, 124, 125
G1GC, 121
Garbage Collection, 120
GC free, 147
GC overhead, 31
Goldman Sachs, 178
HashMap, 33, 52, 53, 54, 55, 56, 60, 61, 62, 63, 71, 72, 106, 144,

222
HashMap Optimization, 54
Hot Path, 66

Conclusion

298

Huge Pages, 241, 242
IRQ affinity, 219, 228, 273
isolcpus, 235, 236, 237, 244, 245
Java Collections, 25, 51
Jitter, 92, 226, 240
JVM caching, 29
JVM Optimization, 35, 103
JVM Optimizations, 28
JVM Parameters, 36
JVM’s Speculative Nature, 152
Kernel Timer Tick, 242
Lambdas, 145
Lead Market Maker, 173
Leydon, 150
LMAX, 147, 148, 163
Load Barriers, 135
Lock Acquisition, 102
Lock flag, 98
Lock free, 147
Lock optimizations, 152
Loom, 151
Loop optimizations, 152
Loop unrolling, 212
Low latency business, 197
Low Latency libraries, 200
Mark word, 23, 24, 98, 127
Market Data, 247
Market Making, 162, 167, 168
match orders, 170
Method inlining, 152
Method Inlining, 210
Midpoint Calculation, 180
modCount, 62
NBBO, 175, 177, 180, 181
No-GC, 142
nohz_full, 245

Conclusion

299

NUMA Awareness, 229
NUMA node, 229, 230, 232
NUMA server, 232
Off-Heap Memory, 143
OpenHFT, 91
OTC derivatives, 163
Panama, 151
Polluted data, 254
POV, 184, 186, 187, 191, 192, 193, 194, 195
Predictable Performance, 123
Pricing Engine, 247
Primitive Types, 16
Pro Rata, 171
P-states, 233
Question, 21, 22, 23, 24, 29, 31, 32, 33, 34, 38, 46, 47, 48, 49,

55, 57, 60, 65, 82, 83, 86, 88, 93, 94, 95, 97, 100, 102, 106,
108, 113, 114

Reader Write Lock, 106
record, 41, 113, 158, 159, 205
Red Hat Linux, 227, 243
Reentrant Lock, 99
ReentrantLock, 112
Reporting and Compliance, 181
Request for Quote, 162
Resizing Issue, 55
RFQ, 2, 14, 85, 140, 162, 163, 164, 165, 201, 207, 221
Ring Buffer, 147
Shenandoah, 124
SIMD, 36, 66, 71, 151, 157, 160, 199, 213, 217, 218, 219
Smart Order Router, 14, 182, 183, 187, 193, 194
SOR, 183, 184, 187, 189, 190, 193, 194
stamped Lock, 113
String Type, 33
Synchronization, 97
Synchronization Tricks, 58
synchronize, 97

Conclusion

300

System Architecture, 163
System.arraycopy, 44, 45, 66, 71
TCP, 248
Thread Pinning, 90, 219
Thread Priority, 92
Threading, 74
ThreadPoolExecutor, 78
Time Weighted Average Pric, 189
Tuned Profiles, 227
Turbos Boost, 233
TWAP, 14, 186, 187, 189, 190, 194, 195
Type Checking, 43
UBS ATS, 178
UDP vs TCP, 248
Ultra Low Latency, 196
ultra-low latency, 140, 160, 196, 225, 245, 268, 269, 271
unboxing, 27, 29, 51, 223
UNIX tunning, 220
UnlockExperimentalVMOptions, 141
UseEpsilonGC, 141
Valhalla, 150
Value Class, 39
Virtual Threads, 79
Volume Weighted Average Price, 187
VWAP, 14, 164, 184, 186, 187, 188, 189, 190, 192, 193, 194, 195
Warm-up, 207
Wrapper Class, 26
Wrapper Types, 25
-XX

+OptimizeStringConcat, 37
+UseStringDeduplication, 37
MaxInlineSize, 211
StringTableSize=<entries>, 37

-XX:+PrintStringTableStatistics, 36
-XX:+UseLargePages, 242
-XX:AutoBoxCacheMax, 30

Conclusion

301

-XX:MaxInlineSize, 211
Z Garbage Collection, 128
Zero Copy, 201
Zero-GC, 142
Zing, 139, 159, 213

