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PREFACE

This book reflects many years of building and tuning low-latency
trading systems on the premises of some of the most prominent
investment banks in the world. Itincludes firsthand engineering
decisions and production environments where every microsecond
counts. For most of my professional life, | have straddled the domains
of Java performance, electronic trading, and system architecture. This
book, or rather the subsequent chapters, sets out to teach the readers
the advanced features of Java types, memory layouts, JVM
optimizations and how the types like wrappers, primitives, records
and strings work internally along with insight into JIT compiler and the
memory model. It uses practical case studies to demonstrate the
principles of bounded garbage, predictable performance in latency
sensitive environments, reliable, and cache aware.

The subsequent chapter delves into the core libraries in addition to the
concepts of threading and synchronization, detailing the operational
mechanics of collections, the processes during resizing, and the
significance of fail-fast and fail-safe practices in overload conditions.
Then, the book describes the use of concurrency mechanisms in Java
from biased locking and CAS to modern virtual threads along with
CPUs pinned to threads. These themes are augmented by the history
of garbage collection from G1GC to Shenandoah, ZGC, and Azul’s C4,
along with techniques to remove GC pauses through off-heap and
zero-copy methods. Every chapter provides an equilibrium of theory



and low-level practical tuning, supported by reasoning from
benchmarks.

The final chapters unify the theory underpinning Java performance
with actual trading infrastructure followed by OS and network tuning.
It describes the processes of order matching in addition to the
architecture of RFQ and market-making systems, the execution of
market algorithms such as VWAP and TWAP on low-latency stacks,
and the structuring of algorithmic strategies, Smart Order Router
(SOR) etc. It has demonstrated consistent performance through OS-
level tuning, NUMA, CPU isolation, and network optimization with
Kernel bypass. The book concludes with an outline of Java code
optimization and an integrated perspective on JVM systems
competing in high-frequency and algorithmic trading where every
microsecond is pivotal to profit-making.

This volume contains more than just system design, it also contains
hundreds of real interview questions alongside intellectual exercises -
not fictitious enigmas, rather questions | have asked, and | have been
asked, during my decades of employment mentoring and hiring global
engineering trading teams. Engineers trying the challenging field of
low-latency systems will find these questions valuable, as will
interviewers seeking to assess a candidate’s real-world capability.
Each question touches on a real-life design problem, system
performance obstacle, or JVM instance that is observable in
production. This book tries to equip the readers with practical insights
that only come with years spent in highly demanding, low-latency, and
high-pressure work situations in addition to technical knowledge.

While writing this book, | undertook some additional research on the
topics, including watching several YouTube lectures. | found that
some of these sources had already conducted similar types of
benchmark tests that | aimed to conduct. To avoid unnecessary
duplication of work, | have appropriately integrated those benchmark
findings. | have transformed some diagrams in the book based on
similar ideas found in those lectures, although | have changed them to
better reflect my explanations by adding or removing elements. |
would like to thank these creators for their valuable contributions to
the low latency community. Lastly, the title of this book was inspired
by one of the lectures that particularly resonated with me. For those
who wish to pursue these materials, | have collected the list of videos
below.

Understanding the Disruptor
https://www.youtube.com/watch?v=DCdGIxBbKU4

Kernel-bypass techniques for high-speed
https://www.youtube.com/watch?v=MpjlWt7fvrw

Ultra-low latency Java in the real world - Daniel Shaya
https://www.youtube.com/watch?v=BD9cRbxWQx8

Low Latency Market Data
https://www.youtube.com/watch?v=y-BSb045LNk

Network Performance Tuning
https://www.youtube.com/watch?v=2YCKSN4xf84
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Primitive Types

JAVA TYPES

The most central part of the Java type system is its small set of
primitive types, which form the foundation of all data structures.

In Java, any variable that is declared must first be given a type, which
is a form of pact. This pact defines the total amount of memory
allocated, the maximum and minimum values that can be stored, and
the functions that can be performed on the variable.

Since Java was developed for use on any type of hardware, the size of
each primitive type is bound by the language specification itself. This
is determined by the Java Virtual Machine, not by the processor or the
operating system. A 32-bit int is thus, and for example, exactly 32 bits
on a desktop Java Virtual Machine (JVM) and on an embedded
controller. This was one Java’s main selling points back in the day, the
concept of write once, run anywhere.

Primitive types are not objects and exist in system memory as
opposed to the heap. They do not possess method tables, identity,
headers, or any other form of metadata. Primitive types are composed
of pure values, which is the reason as to why they are extremely fast
and compact. Advanced Java programmers are thus able to perform
any numeric operation and use loops or even counters without any
form of reduced performance by using primitive types instead of
wrapper classes.

16



Eliminate All Transient Allocations

No-GC OFF-HEAP STORAGE

In any ultra-low-latency system such as, HFT, RFQ or continuous
market making, every microsecond counts. For general-purpose Java
applications, ‘garbage collection’ (GC) involves unpredictable pauses.
This is unacceptable on the hot path of any trading engine. Whether
the JVM is using ZGC, Shenandoah, or Azul's C4 collector, these still
incur safe point coordination and metadata barriers. In an HFT engine,
a 50-microsecond pause is already catastrophic. This results in
missed quotes, stalled prices, ignored order delays, or out-of-order
response acknowledgments.

Hence the term "Zero-GC Java" is used not to describe a globally
disabled GC function, but rather, critical path design in which the Java
Virtual Machine (JVM) has ‘nothing’ to collect. These sections of code
are usually the order routing loops, engine matching, and market data
ingestion. In these loops, all transient object creation must be erased.
Reliance on object reuse, off-heap data structures, and pre-allocation
is what is needed.

Below are the main techniques to implement ‘true’ Zero-GC behavior
on a Java hot path.

To never have to invoke garbage collection, never allocate. Slow loops
with hot vertices suffer from heap churn due to every new operation.
You should not allocate like those below:
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Valhalla

JAVA RECENT PROJECTS

Shifting Focus of Java Projects within Recent Years.

Java is a language which has been greatly improved in the last few
years. The development of Open)JDK has systematically improved Java
by targeted ‘sub’ projects which aim to improve the underlying JVM
model. The modernization of Java OpenJDK projects aims to shift the
use of Java to lower latency in a compute cloud, while enhancing
native use and concurrency with improved JVM CPU profiling. The
projects modernize Java to achieve higher efficiencies and
performance compute Java workloads.

Compute intensive workloads such as trading systems and numerical
analytics can massively benefit from the use of projects. | will begin
with a basic introduction, followed by a deep dive into their synergies
in low-latency environments.

Java 24 and above implements value-based classes which allow for
objects without identity (ex. class instances missing object identity).
The use of Valhalla’s classes greatly improves memory cache and
reduce the overhead placed on the heap while also improving the
locality of the memory cache.

Project Leyden (Java 24+) addresses JVM's slower startup and warm-
up delays. The approaches of static image generation and AOT
initialization help reduce the time that Java applications take to reach

154



Azul’s Zing in HFT

TRADING SYSTEMS

Every microsecond counts towards competitiveness in high-frequency
trading (HFT). The order to market systems are designed to receive and
process market data, make trading decisions, and final orders to the
exchange in as little as 10 microseconds- a complete process.
Understanding exchange microstructure, intricate matching
algorithms, and advanced systems design techniques (kernel-bypass
networking, CPU pinning, cache-friendly data layouts, and lock-free,
GC-free data structures) are fundamental for achieving this
performance. HFT infrastructure usually consists of collocated
servers positioned in the data center of the exchanges to minimize
network latency and ensure deterministic execution. There is a strong
focus on speed, with stable latency in the single-digit microsecond
range because high-frequency trading is extremely sensitive to delays.
Even tiny spikes in latency can cause missed trades or outdated
quotes.

Unlike trade execution systems, counterpart and order management
systems like Charles River, Bloomberg AIM, ION and Fidessa operate
under different latency thresholds and focus on the millisecond range,
rather than the microsecond range. Luckily, | had the privilege to work
on all of them throughout my career. These systems care about speed
only to the extent that performance still meets requirements for
reliability, auditing, and regulatory compliance. These systems also
address the management of large order streams, portfolio allocations,
and multi-exchange and dark pool connectivity. Their primary focus is
on execution quality and expense, rather than timing precision. These
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Darkpool
operators to submit completed trades for verification for post-trade
transparency in real time. Operators must also conduct and enforce
strict, non-discriminatory, access control to order information,
implement malicious order information systems, and ensure no client
discrimination access policies.

However, dark pools have become critical in the new configurations of
the micro-structure of many modern exchanges. It also needs to be
understood that dark pools are neither illegal nor expressly unfair,
they are simply used differently. If public repositories are compared to
Times Square and its noise and activity, dark pools are private art
galleries and meeting rooms that facilitate the completion of serious
deals hidden from the public eye. Each of these places is critical in
their own form. One gives the price; the other provides the volume.

For many traders, dark pools have become another reminder that the
publicized market is only a small percentage of the reality. Not every
volume of trade is visible nor every volume surfaced during the price
discovery process is public, public transactions where the real market
is neither dark nor light. Therein lies the true market structure of
contemporary trading. To optimally design a low latency trading
system, both market conditions must be understood.

Major Dark Pools in International Markets

There are differences between dark pools, some are owned by global
investment banks while others are owned by independent technology
companies or exchanges. Each has its own clientele, regulatory
coverage and matching logic. Below are some dark pools that have

had an impact on institutional trading over the last ten years.

Credit Suisse Crossfinder
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What is ultra-low latency

ULTRA Low LATENCY CODE

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” - Donald Knuth

Caring about that 3% is not premature optimization in my sense; it is
the early realization that low latency begins with awareness.
Recognizing small inefficiencies before they accumulate is what
separates ordinary systems from truly optimized ones.

Within the domain of ‘Ultra-low Latency Programming’, software
performance is sub-100 microseconds and every microsecond is of
utmost importance. Response times are not only important on
average; there are tail latencies to be dealt with, even the 1 out of
10,000 events that take a tad longer to process. Such systems, high-
frequency trading engines and real-time risk processors, are not only
built for speed; but also, for the predictably consistent performance
termed the four nines (99.99%) of latency stability. In high precision
scenarios, questions deepen, for instance, whether Java is a suitable
language for ultra-low latency systems, what programming paradigms
are necessary to achieve such a level of determinism, and do
microservices or a distributed architecture help or hinder these
objectives. Such questions define the ultra-precision art and
engineering necessary to build systems with failures and successes
separated only by a matter of nanoseconds.
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Branch Prediction

Clock cycle
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| consider Ultra-low latency is a programming design pattern
regardless of programming language. For example, branch-less
coding, lock-free coding, no GC coding etc, they are all science rather
than engineering. Consider the following picture with lots of
branches:

OK
OK? OK?

Handle gracefully Handle gracefully Handle gracefully

Code with branching

Can you make this better?
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The importance of OS tuning

OS (LINUX) TUNING

As you strive towards achieving microsecond-level determinism,
variability becomes your enemy. Linux is an outstanding general-
purpose operating system. Yet, under its default settings, it
predominantly optimizes for fairness relative to resource allocation,
throughput, power efficiency, and not, latency predictability. In ultra-
low latency trading, we have to convert Linux from being multi-tenant,
time-sharing to being deterministic, single-tenant.

In this chapter, we understand how to transform Java trading engines
on a standard Linux installation into a more predictable environment.
The focus is on incoherent microsecond precision, wherein pinned
threads, aligned NUMA, configured IRQ, and tuned BIOS collectively
erased the variability towards achieving consistent micron level
performance.

For the best Java code, fastest network card, and lowest-latency
queue to matter, the operating system must not interrupt at the worst
time. 100-500 ps delay, incurred by a background kernel thread, an
errant interrupt, or some fuel-saving power throttling, is an eternity in
trading.

OS tuning is not simply about making Linux "faster." It is about making
it predictable. We do not stand for "average fast." We want always
fast. Enhancing a system's performance doesn't always require code
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Market Data - UDP vs TCP

TCP vs. UDP - Reliability vs. Speed: When transporting market data
across a network, TCP and UDP are the two predominant options
available.

Designed primarily for accuracy, TCP (Transmission Control Protocol)
is responsible for tracking every individual packet utilizing sequence
numbers, and issues an acknowledgment (ACK) for each individual
packet. In the case something is lost or arrives out of sequence, TCP
will also retransmit the packet. This is what makes TCP very reliable.
However, the system's overall latency becomes higher and more
unpredictable because each packet necessitates back-and-forth
communication. Because of these characteristics, TCP is suited for
scenarios such as file downloads and web traffic, but not for
environments where every microsecond is highly critical.

UDP (User Datagram Protocol), on the other hand, entails no such
retransmission, acknowledgment, or sequencing. Streamlined
systems can simply send packets for an undetermined amount of time
without check. This is also called “fire and forget”. This behaviour is
what makes UDP very appealing in high-frequency trading (HFT) and
the overall market. In systems where speed is more critical than
reliability, UDP is preferred. This is because, without any check-in
system, UDP loses packets on the system with no possible
retransmission. This means that the application must recognize the
lost packets and have the protocol to recover it.

How Exchanges Send Market Data

To send market data, exchanges employ UDP multicast. With this
technology, a single data packet can be sent to hundreds and even
thousands of recipients simultaneously. Each market data update - be
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Conclusion

INETWORK TUNING

One of the most critical steps in high-frequency trading system
development is the optimization of the network since it is the primary
and terminal component of each trade execution cycle. We're talking
about systems that handles even more than millions of packets per
second, so every microsecond of overhead matters. In high-frequency
trading, market data is received and processed in real-time, and
orders are transmitted over the same network. Consequently, delays,
jitter, and loss of data packets all negatively impact the profit or even
profit can turn into loss. The optimized performance of the JVM, code
and OS tuning do not mitigate the adverse effects of a slow or
unstable network. Additional latency spikes are a result of added
interrupts, context switching, and overheads from the TCP stack, all of
which can take microseconds.

During this chapter, we examine techniques that are kernel-bypass,
which are strategies that allow user-space code to interact directly
with a network card without utilizing any of the operating system's
networking stack. Kernel-bypass is hot a new concept; it has been
implemented over the past decade in leading trading companies. As
engine designer for low latency systems at Credit Suisse more than a
decade ago during 2011, it was my objective to eliminate the kernel
path and allow the application to communicate directly with the
network hardware. Kernel-bypass provides the ability to eliminate
interrupts, system calls, and data copies, which facilitates the faster
arrival of packets into user memory for direct processing by a polling
thread. There are hardware solutions, such as the Solarflare (currently
Xilinx) network interface cards (NICs), also called smartNIC, together
270

Conclusion

KDB+ A Low-LATENCY
DATABASE

When it comes to the sheer volume of data generated by today's
systems, traditional databases just don't cut it. Financial markets,
industrial sensors, telecom networks and online platforms all fire off
data in a continuous flow of time-stamped events, and the challenge
isn't so much about storing that data, but about crunching it down to
earth in real-time. Well-known decision-making environments that
require millisecond. Sometimes even microsecond, responses mean
that the database is basically on par with the application logic sitting
above it.

Kdb+ was built from the ground up to tackle this sort of data and is
often referred to as a high-performance time-series database, but
that doesn't tell the full story. It's the architectural ideas that enable
kdb+ to gobble, slice and dice and send back out enormous amounts
of real-time data with hardly any delay that set it apart. Coming
hotfooting into the world of finance, kdb+ is at its most visible, but it's
being used in manufacturing, aerospace, telecommunications
networks and lots of other places where the cost of delay is a serious
issue.

Two things drive kdb+'s lightning-fast performance: it's purely in-

memory, with the most recent data sitting snuggly in RAM and being
able to be queried in less than a millisecond, and it’s column-based
rather than row-based. Since time-series workloads tend to involve
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Understanding the Q Language
select mab: 5 mavg bid by sym from quote
Output may look like this:

[sym || ma5 |
IAAPL|150.10 |
IAAPLJ[150.125 |
IAAPLJ[150.15 |
IAAPL|[150.1425|
IAAPL|150.15 |
IAAPL|150.18 |
IMSFT]305.50 |
IMSFT|305.525 |
IMSFT|305.55 |

VWAP (Volume-Weighted Average Price): Consider a Trade table
time timestamp

sym symbol

price float

size int

the basic VWAP for each symbolis:

select vwap: sum price * size % sum size by sym from trade
Output may look like this:

| sym || vwap |
IAAPL|[150.146]
IMSFT|305.553]

A time-bucketed VWAP (for example, 1-minute intervals) is just as
straightforward:
select vwap: sum price * size % sum size by sym, 1 xbar time.minute
from trade
The expression 1 xbar groups trades into 1-minute buckets before
calculating VWAP within each group.

293

Conclusion

Q functions as the query and control language, which manages how
data is loaded, transformed, stored and queried, now or in the past,
when working with kdb+. Coming running over off the heels of the data
load, g's ability to run directly on columnar memory arrays and shun
unnecessary overheads gives developers the chance to write
lightning-fast analytics code with the absolute minimum amount of
code.

The fusion of language, engine and storage model in kdb+ is the secret
to its success in providing extremely low-latency, high-volume time-
series analytics.

Speed is not just an advantage, it's basically a necessity, when
working in the high-stakes world of high-frequency trading and
electronic markets. Financial firms count on databases that can
seamlessly keep up with the torrent of live market data, crank out
microsecond-level analytics, and deliver reliable results even under
the most extreme loads.

Well-known as the de-facto standard in major banks and trading
companies, kdb+ has become the go-to for all these reasons. Its in-
memory, column-structured layout, merged with the expressiveness
of the g language, allows teams to cut through the noise of market
ticks, compute rolling statistics and dissectrisk in real time without
hitting the brakes on the trading engine. Today, humerous global
banks, market makers, and quant desks use kdb+ as the anchor of
their analytics stacks.

In my time at Citi working in Equity Derivatives, kdb+ was at the heart
of real-time monitoring of Greeks, intraday risk and market-sensitive
signals and | have found that its low-latency intake, lightning-fast
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vectorised queries and efficient storage make it one of the handful of
systems that can handle the scale and speed needed in modern low-
latency application.
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